Всероссийская междисциплинарная олимпиада школьников 8–11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие. Том 10. Интеллектуальные робототехнические системы
Всероссийская междисциплинарная олимпиада школьников 8-11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие. Том 32. Программная инженерия в финансовых технологиях.
Всероссийская междисциплинарная олимпиада школьников 8-11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие. Том 6. Большие данные и машинное обучение.
Всероссийская междисциплинарная олимпиада школьников 8-11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие. Том 10. Интеллектуальные робототехнические системы
Orlova T., Piven A., Darmoroz D., Aliev T., Abdelrazek T., Boitsev A., Grafeeva N., Skorb E. Machine learning for soft and liquid molecular materials. Digital Discovery. 2023. Vol. 2. No. 2. pp. 298-315.. doi: 10.1039/D2DD00132B
Всероссийская междисциплинарная олимпиада школьников 8-11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие (в 37 томах). Том 10. Интеллектуальные робототехнические системы
Всероссийская междисциплинарная олимпиада школьников 8-11 класса «Национальная технологическая олимпиада». Учебно-методическое пособие (в 37 томах). Том 6 «Большие данные и машинное обучение»
Бойцев А.А., Волчек Д.Г., Магазенков Е.Н., Неваев М.К., Романов А.А. Детекция ключевых точек лица с помощью капсульных нейронных сетей [Facial keypoints detection using capsule neural networks]. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2023. Т. 23. № 3(145). С. 506-518.. doi: 10.17586/2226-1494-2023-23-3-506-518
Belolipetskaia A.G., Boitcev A.A., Fassari S., Popov I.Y., Rinaldi F. Two-dimensional Helmholtz resonator with two close point-like windows: regularization for the Neumann case. Methods of Functional Analysis and Topology. 2022. Vol. 28. No. 2. pp. 95-104.. doi: 10.31392/MFAT-npu26_2.2022.01
Табиева А.В., Бойцев А.А. Изучение характеристических уравнений для некоторых элементарных функций в вузе. Современное педагогическое образование. 2022. № 5. С. 150-156.
Материалы заданий всероссийской междисциплинарной олимпиады школьников «Национальная технологическая олимпиада» по профилю "Большие данные и машинное обучение".
Belolipetskaya A., Boitsev A.A., Fassari S., Popov I.Y. 3D Helmholtz resonator with two close point-like windows: Regularisation for Dirichlet case. International Journal of Geometric Methods in Modern Physics. 2021. Vol. 18. No. 10. pp. 2150153.. doi: 10.1142/S021988782150153X
Boitsev A.A., Brasche J., Popov I.Y. Point-like perturbation of Rashba Hamiltonian. Complex Variables and Elliptic Equations. 2021. Vol. 66. No. 1. pp. 154-164.. doi: 10.1080/17476933.2019.1709969
Лукина М.В., Егорова О.Б., Бойцев А.А., Михайлова Е.Г., Романов А.А. Технологические особенности создания курсов для онлайн-обучения. Управление образованием: теория и практика. 2021. № 3(43). С. 78-89.. doi: 10.25726/y0879-1235-7394-c
Mikhailova E., Boitsev A., Egorova O., Grafeeva N.G., Romanov A., Volchek D. Curriculum for Digital Culture at ITMO University. Advances in Intelligent Systems and Computing. 2020. Vol. 1161 AISC. pp. 235-244.. doi: 10.1007/978-3-030-45697-9_23
Blinova I.V., Boitsev A.A., Popov I.Y., Froehly A., Neidhardt H. Point-like perturbation for Lame operator. Complex Variables and Elliptic Equations. 2020. Vol. 65. No. 2. pp. 256-271.. doi: 10.1080/17476933.2019.1579207
Regularisation for two close point-like windows
Boitsev A.A., Popov I.Y. A model of an electron in a quantum graph interacting with a two-level system. Наносистемы: Физика, химия, математика = Nanosystems: Physics, Chemistry, Mathematics. 2019. Vol. 10. No. 2. pp. 131-140.. doi: 10.17586/2220-8054-2019-10-2-131-140
A model of several point-like windows in the resonator boundary with the Dirichlet boundary condition
Popov I.Y., Blinova I.V., Boitsev A., Froehly A., Neidhardt H. Scattering of elastic waves by point-like obstacle in two-dimensional case. AIP Conference Proceedings. 2019. Vol. 2116. pp. 290002.. doi: 10.1063/1.5114294
Model of electron in quantum graph interacting with two-level system
Eremin D.A., Grishanov E.N., Popov I.Y., Boitsev A.A. Model of tunnelling through quantum dot and spin–orbit interaction. Pramana - Journal of Physics. 2019. Vol. 92. No. 6. pp. 95.. doi: 10.1007/s12043-019-1767-6
Scattering of elastic waves by point-like obstacle in two-dimensional case
Алексанян В.М., Бойцев А.А., Волчек Д.Г., Романов А.А. Особенности разработки и использования интерактивных визуализационных моделей по теме численного интегрирования. Инновации в образовании. 2018. № 5. С. 5-14.
Boitsev A.A., Brasche J., Neidhardt H., Popov I.Y. A model of electron transport through a boson cavity. Наносистемы: Физика, химия, математика = Nanosystems: Physics, Chemistry, Mathematics. 2018. Vol. 9. No. 2. pp. 171-178.. doi: 10.17586/2220-8054-2018-9-2-171-178
Математика. Дополнительные главы. Теория. Задачи. Графики.
Boitsev A.A., Brasche J., Malamud M., Neidhardt H., Popov I.Y. Boundary Triplets, Tensor Products and Point Contacts to Reservoirs. Annales Henri Poincare. 2018. Vol. 19. No. 9. pp. 2783-2837.. doi: 10.1007/s00023-018-0698-y
Operator extensions theory for Jaynes-Cummings model
Boundary triplets for point-like perturbation of Rashba Hamiltonian
Boitsev A.A., Johannes B., Malamud M., Neidhardt H., Popov I.Y. Normalized boundary triplet for a sum of tensor products of operators. TU Clausthal. 2017. pp. 1-35.
Математика. Показательные и логарифмические выражения. Теория. Задачи. Графики
Boundary triplets for point-like perturbation of Rashba Hamiltonian
Boitsev A.A., Neidhardt H., Popov I.Y. Dirac operator coupled to bosons. Наносистемы: Физика, химия, математика = Nanosystems: Physics, Chemistry, Mathematics. 2016. Vol. 7. No. 2. pp. 332-339.. doi: 10.17586/2220-8054-2016-7-2-332-339
Boudary triplets for sum of tensor products of operators
Boundary triplets approach to extensions of operator tensor products
Явно решаемые модели взаимодействия электромагнитного поля и электрона на базе теории расширений операторов и метода граничных троек
Типовой расчет по математическому анализу для направления подготовки бакалавров "Прикладная математика и информатика". 4 модуль
Труды студенческого центра прикладных математических исследований
Типовой расчет по математическому анализу для направления подготовки бакалавров "Прикладная математика и информатика". 3 модуль
Типовой расчет по математическому анализу для направления подготовки бакалавров "Прикладная математика и информатика". 2 модуль
Математика. Тригонометрия: Теория. Задачи. Графики.
Математика. Системы уравнений. Текстовые задачи: Теория. Задачи
Boitsev A.A. Boundary triplets approach for Dirac operator. Mathematical Results in Quantum Mechanics. Proceedings of the QMath12 Conference. 2015. pp. 213-219.
Бойцев А.А. Граничная тройка и функция Вейля для сумм тензорных произведений операторов. Труды студенческого центра прикладных математических исследований. 2015. Т. 5. С. 19-24.
Типовой расчет по математическому анализу для направления "Прикладная математика и информатика". 1 модуль.
Математика. Рациональные выражения: Теория. Задачи. Графики.
Планиметрия (практикум по решению задач)
Boundary triplets to extensions of operator tensor products
Weyl function and boundary triplets: unbounded case
Студенческий турнир "Математические бои в Университете ИТМО-2015"
Элементы дифференциального исчисления (методическое пособие)
Математика. Модуль. Иррациональные выражения: Теория. Задачи. Графики
Chain of point-like potentials in R^3 and infinitness of the number of bounded states
Weyl function for sum of operator tensor product
Chain of point-like potentials in R^3 and infinitness of the number of bounded states
Бойцев А.А., Нейдхардт Х., Попов И.Ю. Расширение тензорного произведения операторов на примере оператора Дирака. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2014. № 4(92). С. 164-168.
Boitsev A., Popov I.Y., Sokolov O. Chain of point-like potentials in R3 and infiniteness of the number of bound states. Journal of Physics: Conference Series. 2014. Vol. 541. No. 1. pp. 012092.. doi: 10.1088/1742-6596/541/1/012092
Гамма-поле и функция Вейля для тензорного произведения операторов
Бойцев А.А. Явно решаемые модели, описываемые суммой тензорных произведений операторов. Труды студенческого центра прикладных математических исследований. 2014. Т. 4. С. 12-16.
Boundary triplets approach for Dirac operator extension
Boitsev A.A., Neidhardt H., Popov I.Y. Weyl function for sum of operators tensor products. Наносистемы: Физика, химия, математика = Nanosystems: Physics, Chemistry, Mathematics. 2013. Vol. 4. No. 6. pp. 747-759.
Бойцев А.А. Метод граничных троек для тензорного произведения операторов. Труды студенческого центра прикладных математических исследований. 2013. Т. 3. С. 31-35.
"Boundary triplets approach for sum of tensor products of operators"
"Boundary triplets approach for sum of tensor products of operators"
Бойцев А.А. Подход граничных троек для тензорного произведения операторов. Альманах научных работ молодых ученых. 2013. С. 52-55.
Бойцев А.А., Попов И.Ю., Соколов О.В. Гамильтониан с точечными потенциалами и бесконечным числом собственных значений. Наносистемы: Физика, химия, математика = Nanosystems: Physics, Chemistry, Mathematics. 2012. Т. 3. № 4. С. 9-19.
Точечный спектр системы потенциалов нулевого радиуса
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Москва
Российская Федерация, Москва
Российская Федерация, Санкт-Петербург
Болгария
Нидерланды, Амстердам
Российская Федерация, Санкт-Петербург