Solovev G., Sokolov M., Hussein A., Nikitin N. Augmentation of Laser Welding Dataset through a combination of Evolutionary Optimization and Deep Learning. GECCO 2025 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2025. pp. 113-114.. doi: 10.1145/3712255.3734268
Borisova J., Nikitin N. Towards importance of periodicity estimation in long-term spatio-temporal data prediction. 2025 International Joint Conference on Neural Networks (IJCNN). 2025. pp. 1-8.. doi: 10.1109/IJCNN64981.2025.11228079
Gilemkhanov D., Solovev G.V., Zhidkovskaya A.B., Orlova A., Gubina N., Vepreva A., Golovinskii R., Tonkii I., Dubrovsky I., Gurev I., Chistiakov D., Aliev T., Poddiakov I., Zubkova G., Skorb E.V., Vinogradov V., Boukhanovsky A., Nikitin N.O., Dmitrenko A., Kalyuzhnaya A.V., Savchenko A. MADD: Multi-Agent Drug Discovery Orchestra. Findings of the Association for Computational Linguistics: EMNLP 2025. 2025. pp. 6956–6998.. doi: 10.18653/v1/2025.findings-emnlp.367
Lunev A., Nikitin N. Neuron-Level Architecture Search for Efficient Model Design. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2025. Vol. 16090. pp. 191-203.. doi: 10.1007/978-3-032-05461-6_13
Francisco T.J., Da Silva Macedo B., Yaseen Z.M., Nikitin N.O., Bodini M., Gorgoglione A., Saporetti C., Goliatt L. Evolutionary polynomial modeling for interpretable drought prediction and resilient resource management. Ecological Informatics. 2025. Vol. 90. pp. 103217.. doi: 10.1016/j.ecoinf.2025.103217
Kalyuzhnaya A., Mityagin S., Lutsenko E., Getmanov A., Aksenkin Y., Fatkhiev K., Fedorin K., Nikitin N.O., Chichkova N., Vorona V., Boukhanovsky A. LLM Agents for Smart City Management: Enhancing Decision Support Through Multi-Agent AI Systems. Smart Cities. 2025. Vol. 8. No. 1. pp. 19.. doi: 10.3390/smartcities8010019
Borisova J., Morshchinin I.V., Nazarova V.I., Molodkina N., Nikitin N.O. Low-Cost Microalgae Cell Concentration Estimation in Hydrochemistry Applications Using Computer Vision. Sensors. 2025. Vol. 25. No. 15. pp. 4651.. doi: 10.3390/s25154651
Никитин Н.О., Борисова Ю.И., Аксенкин Я.В., Башкова К., Луценко Е.И., Калюжная А.В., Якимушкин Д.О., Котилевская А.М., Верташ Т.Н., Колюбакин А.А., Багорьян Е.С., Бухановский А.В. Предвычисление ледовых условий для обеспечения хозяйственной деятельности в морях российской Арктики с помощью методов глубокого обучения [Prediction of ice conditions to support economic activity in the Russian Arctic seas using deep learning methods]. Арктика: экология и экономика [Arktika: Ekologia i Ekonomika]. 2025. Т. 15. № 1(57). С. 119-130.. doi: 10.25283/2223-4594-2025-1-119-130
Borisova J., Kuznetsov A., Solovev G., Nikitin N.O. Understanding the Limitations of Deep Transformer Models for Sea Ice Forecasting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2025. Vol. 15905. pp. 104-118.. doi: 10.1007/978-3-031-97632-2_8
An LLM-Powered Tool for Enhancing Scientific Open-Source Repositories // Championing Open-source DEvelopment in ML Workshop @ ICML25
Kirgizov G., Nikitin N.O., Pinchuk M., Yamshchikova L., Deeva I., Shakhkyan K., Borisov I.I., Zharkov K.D., Kalyuzhnaya A.V. Automated Design of Graph-based Models and Structures using Modular Evolutionary Framework. 4th workshop on Graphs and more Complex structures for Learning and Reasoning (GCLR 2024). Colocated with AAAI 2024. 2024. pp. accepted-papers.
Sidorenko D., Starodubcev N., Pinchuk M., Nikitin N.O. Interpretable Structural Analysis for Evolutionary Generative Design of Coastal Breakwaters. Communications in Computer and Information Science. 2024. Vol. 1981. pp. 172-185.. doi: 10.1007/978-3-031-53025-8_13
Nikitin N.O., Pinchuk M., Pokrovskii V., Shevchenko P., Getmanov A., Aksenkin Y., Revin I., Stebenkov A., Latypov V., Poslavskaya E., Kalyuzhnaya A.V. Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines. Knowledge-Based Systems. 2024. Vol. 302. pp. 112363.. doi: 10.1016/j.knosys.2024.112363
Generative AI for Co-Crystal Design with Property Control
Solovev G.V., Hvatov A., Petrov O., Kalyuzhnaya A., Klimova A., Nikitin N.O. Evolutionary Optimization for Inverse Problem in Engineering: The Case Study of Defects Shape Reconstruction. Communications in Computer and Information Science. 2024. Vol. 2281. pp. 125-140.. doi: 10.1007/978-3-031-77432-4_9
Getmanov A., Nikitin N.O. Evolutionary Automated Machine Learning for Light-Weight Multi-Modal Pipelines. IEEE Congress on Evolutionary Computation, CEC 2024. 2024. pp. 1-8.. doi: 10.1109/CEC60901.2024.10611825
Pinchuk M., Kirgizov G., Yamshchikova L., Nikitin N., Deeva I., Shakhkyan K., Borisov I., Zharkov K., Kalyuzhnaya A. GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects. GECCO 2024 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2024. pp. 1668-1675.. doi: 10.1145/3638530.3664141
Иов И.Л., Никитин Н.О. Feature Engineering Pipeline Optimization in AutoML Workflow Using Large Language Models. Proceedings of Artificial Intelligence and Natural Language AINL. 2024. pp. 0.
Borisova J., Nikitin N. Lightweight Neural Ensemble Approach for Arctic Sea Ice Forecasting. IEEE Congress on Evolutionary Computation, CEC 2024. 2024. pp. 1-8.. doi: 10.1109/CEC60901.2024.10612104
Gubina N., Dmitrenko A., Solovev G., Yamshchikova L., Petrov O., Lebedev I., Serov N., Kirgizov G., Nikitin N., Vinogradov V. Hybrid Generative AI for De Novo Design of Co-Crystals with Enhanced Tabletability. Advances in Neural Information Processing Systems. 2024. Vol. 37. pp. 1-39.
Иов И.Л., Никитин Н.О. Feature engineering pipeline optimisation in AutoML workflow using large language models [Оптимизация конвейера разработки признаков в AutoML с использованием крупных языковых моделей]. Записки научных семинаров Санкт-Петербургского отделения Математического института им. В.А.Стеклова РАН. 2024. Т. 540. С. 82-112.
Starodubcev N., Nikitin N., Andronova E., Gavaza K., Sidorenko D., Kalyuzhnaya A.V. Generative design of physical objects using modular framework. Engineering Applications of Artificial Intelligence. 2023. Vol. 119. pp. 105715.. doi: 10.1016/j.engappai.2022.105715
Revin I., Potemkin V., Balabanov N., Nikitin N.O. Automated machine learning approach for time series classification pipelines using evolutionary optimization. Knowledge-Based Systems. 2023. Vol. 268. pp. 110483.. doi: 10.1016/j.knosys.2023.110483
Klimova A., Nasonov D., Hvatov A., Nikitin N.O., Ivanov S.V., Kalyuzhnaya A.V., Boukhanovsky A. Strategic Trends in Artificial Intelligence Through Impact of Computational Science: What Young Scientists Should Expect. Procedia Computer Science. 2023. Vol. 229. pp. 1-7.. doi: 10.1016/j.procs.2023.12.001
Nikitin N.O., Teryoshkin S., Pokrovskii V., Pakulin S., Nasonov D. Improvement of Computational Performance of Evolutionary AutoML in a Heterogeneous Environment. IEEE Congress on Evolutionary Computation, CEC 2023. 2023. pp. 1-8.. doi: 10.1109/CEC53210.2023.10254012
Stebenkov A.S., Nikitin N.O. Automated Generation of Ensemble Pipelines using Policy-Based Reinforcement Learning method. Procedia Computer Science. 2023. Vol. 229. pp. 70-79.. doi: 10.1016/j.procs.2023.12.009
Современные методы оптимизации с примерами на Python
Sarafanov M., Pokrovskii V., Nikitin N.O. Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series. IEEE Congress on Evolutionary Computation, CEC 2022. 2022. pp. 1-8.. doi: 10.1109/CEC55065.2022.9870347
Sarafanov M., Nikitin N.O., Kalyuzhnaya A.V. Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning. Advances in Intelligent Systems and Computing. 2022. Vol. 1401. pp. 633-642.. doi: 10.1007/978-3-030-87869-6_60
Nikitin N.O., Revin I., Hvatov A., Vychuzhanin P., Kalyuzhnaya A.V. Hybrid and Automated Machine Learning Approaches for Oil Fields Development: the Case Study of Volve Field, North Sea. Computers and Geosciences. 2022. Vol. 161. pp. 105061.. doi: 10.1016/j.cageo.2022.105061
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Kaluzhnaya A.V., Boukhanovsky A. Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines. Future Generation Computer Systems. 2022. Vol. 127. pp. 109-125.. doi: 10.1016/j.future.2021.08.022
Starodubcev N., Nikitin N.O., Kalyuzhnaya A.V. Surrogate-Assisted Evolutionary Generative Design Of Breakwaters Using Deep Convolutional Networks. IEEE Congress on Evolutionary Computation, CEC 2022. 2022. pp. 1-8.. doi: 10.1109/CEC55065.2022.9870336
Платформа интерактивного построения композитных моделей на основе автоматического машинного обучения
Применение методов автоматического машинного обучения для прогнозирования временных рядов
Интерактивный анализ и визуализация процессов идентификации композитных моделей
Borisova J., Aladina A., Nikitin N.O. Hybrid Modelling of Environmental Processes using Composite Models. Procedia Computer Science. 2021. Vol. 193. pp. 256-265.. doi: 10.1016/j.procs.2021.10.026
Barabanova I.V., Vychuzhanin P., Nikitin N.O. Sensitivity Analysis of the Composite Data-Driven Pipelines in the Automated Machine Learning. Procedia Computer Science. 2021. Vol. 193. pp. 484-493.. doi: 10.1016/j.procs.2021.10.050
Polonskaia I.S., Aliev I.R., Nikitin N.O. Automated Evolutionary Design of CNN Classifiers for Object Recognition on Satellite Images. Procedia Computer Science. 2021. Vol. 193. pp. 210-219.. doi: 10.1016/j.procs.2021.10.021
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Kaluzhnaya A.V. Multi-Purpose Evolutionary AutoML for the Generative Design of Composite Modelling Pipelines. KDD-AutoML Workshop 2021. 2021. pp. 1-6.
Nikitin N.O., Polonskaia I.S., Kalyuzhnaya A.V., Boukhanovsky A.V. The multi-objective optimisation of breakwaters using evolutionary approach. Proceedings of the 5th International Conference on Maritime Technology and Engineering, MARTECH 2020. 2021. Vol. 2. pp. 767-774.. doi: 10.1201/9781003216599-82
Nikitin N.O., Hvatov A., Polonskaia I.S., Kalyuzhnaya A.V., Grigorev G., Wang X., Qian X. Generative design of microfluidic channel geometry using evolutionary approach. GECCO 2021 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2021. pp. 59-60.. doi: 10.1145/3449726.3462740
Оценка чувствительности композитных моделей в рамках фреймворка автоматического машинного обучения
Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.V. Towards generative design of computationally efficient mathematical models with evolutionary learning. Entropy. 2021. Vol. 23. No. 1. pp. 28.. doi: 10.3390/e23010028
Hvatov A., Maslyaev M., Polonskaia I.S., Sarafanov M.I., Merezhnikov M., Nikitin N.O. Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models. Communications in Computer and Information Science. 2021. Vol. 1488. pp. 72-85.. doi: 10.1007/978-3-030-91885-9_6
Deeva I., Bubnova A., Andriushchenko P.D., Voskresenskiy A., Bukhanov N.V., Nikitin N.O., Kalyuzhnaya A.V. Oil and Gas Reservoirs Parameters Analysis Using Mixed Learning of Bayesian Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12742. pp. 394-407.. doi: 10.1007/978-3-030-77961-0_33
Sarafanov M.I., Borisova Y., Maslyaev M., Revin I., Maximov G., Nikitin N.O. Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River. Water. 2021. Vol. 13. No. 24. pp. 3482.. doi: 10.3390/w13243482
Polonskaia I.S., Nikitin N.O., Revin I., Vychuzhanin P., Kaluzhnaya A.V. Multi-Objective Evolutionary Design of Composite Data-Driven Models. IEEE Congress on Evolutionary Computation, CEC 2021. 2021. pp. 926-933.. doi: 10.1109/CEC45853.2021.9504773
Sarafanov M., Kazakov E.E., Nikitin N.O., Kalyuzhnaya A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI. Remote Sensing. 2020. Vol. 12. No. 23. pp. 3865.. doi: 10.3390/rs12233865
Никитин Н.О., Полонская Я.С., Калюжная А.В. Интеллектуальное проектирование защитных сооружений на шельфе с применением моделей морской среды и методов оптимизации. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 141-142.
Калюжная А.В., Никитин Н.О., Вычужанин П.В., Хватов А.А. Технологии прикладного искусcтвенного интеллекта в задачах численного моделирования процессов в океане. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 81-82.
Kaluzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.V. Automatic Evolutionary Learning of Composite Models With Knowledge Enrichment. GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.. doi: 10.1145/3377929.3398167
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kaluzhnaya A.V. Structural Evolutionary Learning for Composite Classification Models. Procedia Computer Science. 2020. Vol. 178. pp. 414-423.. doi: 10.1016/j.procs.2020.11.043
Применение методов машинного обучения для заполнения пропусков в данных дистанционного зондирования
Deeva I., Nikitin N.O., Kalyuzhnaya A.V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression. Procedia Computer Science. 2019. Vol. 156. pp. 357-366.. doi: 10.1016/j.procs.2019.08.212
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study. GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion. 2019. pp. 1583-1591.. doi: 10.1145/3319619.3326876
Khvatov A.A., Nikitin N., Kaluzhnaya A.V., Kosukhin S.S. Adaptation of NEMO-LIM3 model for multigrid high-resolution Arctic simulation. Ocean Modelling. 2019. Vol. 141. pp. 101427.. doi: 10.1016/j.ocemod.2019.101427
Vychuzhanin P., Nikitin N.O., Kalyuzhnaya A.V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11536. pp. 614-627.. doi: 10.1007/978-3-030-22734-0_45
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification. Complexity. 2018. pp. 5870987.. doi: 10.1155/2018/5870987
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. 2018. pp. 255-256.. doi: 10.1145/3205651.3205751
Nikitin N.O., Kalyuzhnaya A.V., Bochenina K., Kudryashov A., Uteuov A., Derevitskii I., Boukhanovsky A.V. Evolutionary ensemble approach for behavioral credit scoring. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 825-831.. doi: 10.1007/978-3-319-93713-7_81
Araya-Lopez J., Nikitin N.O., Kalyuzhnaya A.V. Case-adaptive ensemble technique for met-ocean data restoration. Procedia Computer Science. 2018. Vol. 136. pp. 311-320.. doi: 10.1016/j.procs.2018.08.283
Kalyuzhnaya A.V., Nikitin N.O., Butakov N.A., Nasonov D.A. Precedent-based approach for the identification of deviant behavior in social media. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 846-852.. doi: 10.1007/978-3-319-93713-7_84
Эволюционный подход к управлению качеством ансамблевых моделей
Noymanee J., Nikitin N.O., Kaluzhnaya A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin. Procedia Computer Science. 2017. Vol. 119. pp. 288-297.. doi: 10.1016/j.procs.2017.11.187
Никитин Н.О. Программный комплекс для моделирования синтетических циклонов. Свидетельство о регистрации программы для ЭВМ. 2017. Т. 2017616937. № от 20.06.2017.
Nikitin N.O., Spirin D.S., Visheratin A.A., Kalyuzhnaya A.V. Statistics-based models of flood-causing cyclones for the Baltic Sea region. Procedia Computer Science. 2016. Vol. 101. pp. 272–281.. doi: 10.1016/j.procs.2016.11.032
Использование индексирования для аннотирования документов
Российская Федерация
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Греция, Ираклион
Российская Федерация, Санкт-Петербург