Kalyuzhnaya A., Mityagin S., Lutsenko E., Getmanov A., Aksenkin Y., Fatkhiev K., Fedorin K., Nikitin N.O., Chichkova N., Vorona V., Boukhanovsky A. LLM Agents for Smart City Management: Enhancing Decision Support Through Multi-Agent AI Systems. Smart Cities. 2025. Vol. 8. No. 1. pp. 19.
Kirgizov G., Nikitin N.O., Pinchuk M., Yamshchikova L., Deeva I., Shakhkyan K., Borisov I.I., Zharkov K.D., Kalyuzhnaya A.V. Automated Design of Graph-based Models and Structures using Modular Evolutionary Framework. 4th workshop on Graphs and more Complex structures for Learning and Reasoning (GCLR 2024). Colocated with AAAI 2024. 2024. pp. accepted-papers.
Solovev G.V., Hvatov A., Petrov O., Kalyuzhnaya A., Klimova A., Nikitin N.O. Evolutionary Optimization for Inverse Problem in Engineering: The Case Study of Defects Shape Reconstruction. Communications in Computer and Information Science. 2024. Vol. 2281. pp. 125-140.
Pinchuk M., Kirgizov G., Yamshchikova L., Nikitin N., Deeva I., Shakhkyan K., Borisov I., Zharkov K., Kalyuzhnaya A. GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects. GECCO 2024 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2024. pp. 1668-1675.
Starodubcev N., Nikitin N., Andronova E., Gavaza K., Sidorenko D., Kalyuzhnaya A.V. Generative design of physical objects using modular framework. Engineering Applications of Artificial Intelligence. 2023. Vol. 119. pp. 105715.
Deeva I., Kalyuzhnaya A.V., Boukhanovsky A.V. Adaptive Learning Algorithm for Bayesian Networks Based on Kernel Mixtures Distributions. International Journal of Artificial Intelligence. 2023. Vol. 21. No. 1. pp. 90-108.
Nizovtseva I., Palmin V., Simkin I., Starodumov I., Mikushin P., Nozik A., Hamitov T., Ivanov S., Vikharev S., Zinovev A., Svitich V., Mogilev M., Nikishina M., Kraev S., Yurchenko S., Mityashin T., Chernushkin D., Kalyuzhnaya A., Blyakhman F. Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms. Algorithms. 2023. Vol. 16. No. 3. pp. 125.
Deeva I., Bubnova A., Kalyuzhnaya A.V. Advanced Approach for Distributions Parameters Learning in Bayesian Networks with Gaussian Mixture Models and Discriminative Models. Mathematics. 2023. Vol. 11. No. 2. pp. 343.
Современные методы оптимизации с примерами на Python
Filatova A., Kovalchuk M., Batalenkov S., Voskresenskiy A., Deeva I., Kalyuzhnaya A., Shpilman A., Kondrashova N., Dudnichenko M., Nasonov D. A Multi-Contractor Approach for MLRCPSP with the Graph Structure Optimization. IEEE Congress on Evolutionary Computation, CEC 2023. 2023. pp. 1-8.
Nikitin N.O., Pinchuk M., Pokrovskii V., Shevchenko P., Getmanov A., Aksenkin Y., Revin I., Stebenkov A., Latypov V., Poslavskaya E., Kalyuzhnaya A.V. Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines. Knowledge-Based Systems. 2023. Vol. 302. pp. 112363.
Klimova A., Nasonov D., Hvatov A., Nikitin N.O., Ivanov S.V., Kalyuzhnaya A.V., Boukhanovsky A. Strategic Trends in Artificial Intelligence Through Impact of Computational Science: What Young Scientists Should Expect. Procedia Computer Science. 2023. Vol. 229. pp. 1-7.
Starodubcev N., Nikitin N.O., Kalyuzhnaya A.V. Surrogate-Assisted Evolutionary Generative Design Of Breakwaters Using Deep Convolutional Networks. IEEE Congress on Evolutionary Computation, CEC 2022. 2022. pp. 1-8.
Nikitin N.O., Revin I., Hvatov A., Vychuzhanin P., Kalyuzhnaya A.V. Hybrid and Automated Machine Learning Approaches for Oil Fields Development: the Case Study of Volve Field, North Sea. Computers and Geosciences. 2022. Vol. 161. pp. 105061.
Sarafanov M., Nikitin N.O., Kalyuzhnaya A.V. Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning. Advances in Intelligent Systems and Computing. 2022. Vol. 1401. pp. 633-642.
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Kaluzhnaya A.V., Boukhanovsky A. Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines. Future Generation Computer Systems. 2022. Vol. 127. pp. 109-125.
Deeva I., Mossyayev A., Kalyuzhnaya A.V. A Multimodal Approach to Synthetic Personal Data Generation with Mixed Modelling: Bayesian Networks, GAN’s and Classification Models. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 2022. Vol. 419. pp. 847-859.
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Kaluzhnaya A.V. Multi-Purpose Evolutionary AutoML for the Generative Design of Composite Modelling Pipelines. KDD-AutoML Workshop 2021. 2021. pp. 1-6.
Применение методов автоматического машинного обучения для прогнозирования временных рядов
Быков Н.Ю., Хватов А.А., Калюжная А.В., Бухановский А.В. Метод восстановления моделей тепломассопереноса по пространственно-временным распределениям параметров. Письма в Журнал технической физики. 2021. Т. 47. № 24. С. 9-12.
Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.V. Towards generative design of computationally efficient mathematical models with evolutionary learning. Entropy. 2021. Vol. 23. No. 1. pp. 28.
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Partial differential equations discovery with EPDE framework: Application for real and synthetic data (R). Journal of Computational Science. 2021. Vol. 53. pp. 101345.
Bykov N., Hvatov A., Kalyuzhnaya A.V., Boukhanovsky A.V. A method of generative model design based on irregular data in application to heat transfer problems. Journal of Physics: Conference Series. 2021. Vol. 1959. No. 1. pp. 012012.
Nikitin N.O., Hvatov A., Polonskaia I.S., Kalyuzhnaya A.V., Grigorev G., Wang X., Qian X. Generative design of microfluidic channel geometry using evolutionary approach. GECCO 2021 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2021. pp. 59-60.
Deeva I., Bubnova A., Andriushchenko P.D., Voskresenskiy A., Bukhanov N.V., Nikitin N.O., Kalyuzhnaya A.V. Oil and Gas Reservoirs Parameters Analysis Using Mixed Learning of Bayesian Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12742. pp. 394-407.
Polonskaia I.S., Nikitin N.O., Revin I., Vychuzhanin P., Kaluzhnaya A.V. Multi-Objective Evolutionary Design of Composite Data-Driven Models. IEEE Congress on Evolutionary Computation, CEC 2021. 2021. pp. 926-933.
Bubnova A., Deeva I., Kalyuzhnaya A.V. MIxBN: library for learning Bayesian networks from mixed data. Procedia Computer Science. 2021. Vol. 193. pp. 494-503.
Nikitin N.O., Polonskaia I.S., Kalyuzhnaya A.V., Boukhanovsky A.V. The multi-objective optimisation of breakwaters using evolutionary approach. Proceedings of the 5th International Conference on Maritime Technology and Engineering, MARTECH 2020. 2021. Vol. 2. pp. 767-774.
Deeva I., Andriushchenko P.D., Kalyuzhnaya A.V., Boukhanovsky A.V. Bayesian Networks-based personal data synthesis. ACM International Conference Proceeding Series. 2020. pp. 6-11.
Никитин Н.О., Полонская Я.С., Калюжная А.В. Интеллектуальное проектирование защитных сооружений на шельфе с применением моделей морской среды и методов оптимизации. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 141-142.
Maslyaev M., Hvatov A., Kalyuzhnaya A. Data-Driven Partial Differential Equations Discovery Approach for the Noised Multi-dimensional Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12138 LNCS. pp. 86-100.
Калюжная А.В., Никитин Н.О., Вычужанин П.В., Хватов А.А. Технологии прикладного искусcтвенного интеллекта в задачах численного моделирования процессов в океане. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 81-82.
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Discovery of the data-driven models of continuous metocean process in form of nonlinear ordinary differential equations. Procedia Computer Science. 2020. Vol. 178. pp. 18-26.
Исследование эффективности эволюционных операторов в задачах оптимизации матричных генотипов
Применение методов машинного обучения для заполнения пропусков в данных дистанционного зондирования
Kaluzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.V. Automatic Evolutionary Learning of Composite Models With Knowledge Enrichment. GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
Андрющенко П.Д., Деева И.Ю., Калюжная А.В., Бубнова А.В., Воскресенский А.Г., Буханов Н.В. Анализ параметров нефтегазовых месторождений с использованием байесовских сетей [Analysis of parameters of oil and gas fields using Bayesian networks]. Интеллектуальный анализ данных в нефтегазовой отрасли: сборник тезисов конференции [Data Science in Oil and Gas 2020]. 2020. С. 1-10.
Sarafanov M., Kazakov E.E., Nikitin N.O., Kalyuzhnaya A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI. Remote Sensing. 2020. Vol. 12. No. 23. pp. 3865.
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kaluzhnaya A.V. Structural Evolutionary Learning for Composite Classification Models. Procedia Computer Science. 2020. Vol. 178. pp. 414-423.
Технологии поддержки жизненного цикла комплекса гидрометеорологических моделей
Khvatov A.A., Nikitin N., Kaluzhnaya A.V., Kosukhin S.S. Adaptation of NEMO-LIM3 model for multigrid high-resolution Arctic simulation. Ocean Modelling. 2019. Vol. 141. pp. 101427.
Uteuov A., Kalyuzhnaya A.V., Boukhanovsky A.V. The cities weather forecasting by crowdsourced atmospheric data. Procedia Computer Science. 2019. Vol. 156. pp. 347-356.
Обнаружение аномалий в результатах гидрометеорологического моделирования с использованием сверточных нейронных сетей
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study. GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion. 2019. pp. 1583-1591.
Deeva I., Nikitin N.O., Kalyuzhnaya A.V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression. Procedia Computer Science. 2019. Vol. 156. pp. 357-366.
Vychuzhanin P., Nikitin N.O., Kalyuzhnaya A.V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11536. pp. 614-627.
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Data-driven partial derivative equations discovery with evolutionary approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11540 LNCS. pp. 635-641.
Вычужанин П.В., Калюжная А.В. Робастная калибровка параметров численной модели ветрового волнения SWAN. Альманах научных работ молодых ученых Университета ИТМО. 2019. Т. 3. С. 151-155.
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Эволюционный подход к управлению качеством ансамблевых моделей
Разработка системы автоматизированной верификации гидрометеорологической вычислительной системы //Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО, 2018. - 2018
Тематическое моделирование финансовых привычек и интересов пользователей в социальных сетях
Uteuov A., Kalyuzhnaya A. Combined document embedding and hierarchical topic model for social media texts analysis. Procedia Computer Science. 2018. Vol. 136. pp. 293-303.
Araya-Lopez J., Nikitin N.O., Kalyuzhnaya A.V. Case-adaptive ensemble technique for met-ocean data restoration. Procedia Computer Science. 2018. Vol. 136. pp. 311-320.
Vychuzhanin P., Hvatov A., Kalyuzhnaya A.V. Anomalies Detection in Metocean Simulation Results Using Convolutional Neural Networks. Procedia Computer Science. 2018. Vol. 136. pp. 321-330.
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. 2018. pp. 255-256.
Kalyuzhnaya A.V., Nasonov D., Ivanov S.V., Kosukhin S.S., Boukhanovsky A.V. Towards a scenario-based solution for extreme metocean event simulation applying urgent computing. Future Generation Computer Systems. 2018. Vol. 79. No. Part.2. pp. 604-617.
Утеуов А.К., Арайа Лопес Х., Калюжная А.В. Контроль качества и восстановление пропусков в гидрометеорологических данных. Альманах научных работ молодых ученых Университета ИТМО. 2018. Т. 2. С. 141-144.
Kalyuzhnaya A.V., Nikitin N.O., Butakov N.A., Nasonov D.A. Precedent-based approach for the identification of deviant behavior in social media. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 846-852.
Nikitin N.O., Kalyuzhnaya A.V., Bochenina K., Kudryashov A., Uteuov A., Derevitskii I., Boukhanovsky A.V. Evolutionary ensemble approach for behavioral credit scoring. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 825-831.
Вычужанин П.В., Калюжная А.В. Разработка системы автоматизированной верификации гидрометеорологической вычислительной системы. Альманах научных работ молодых ученых Университета ИТМО. 2018. Т. 2. С. 114-117.
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification. Complexity. 2018. pp. 5870987.
Lopez J.L., Uteuov A., Kalyuzhnaya A.V. Quality control and data restoration of metocean Arctic data. Procedia Computer Science. 2017. Vol. 119. pp. 315-324.
Gusarov A., Kalyuzhnaya A.V., Boukhanovsky A.V. Spatially adaptive ensemble optimal interpolation of in-situ observations into numerical vector field models. Procedia Computer Science. 2017. Vol. 119. pp. 325-333.
Noymanee J., Nikitin N.O., Kaluzhnaya A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin. Procedia Computer Science. 2017. Vol. 119. pp. 288-297.
Nikishova A.V., Kalyuzhnaya A.V., Boukhanovsky A.V., Khukstra A. Uncertainty quantification and sensitivity analysis applied to the wind wave model SWAN. Environmental Modelling and Software. 2017. Vol. 95. pp. 344-357.
Наводнения в Санкт-Петербурге: история и современность
Araya-Lopez J., Kaluzhnaya A.V., Kosukhin S.S., Ivanov S.V. Data Quality Control for St. Petersburg flood warning system. Procedia Computer Science. 2016. Vol. 80. pp. 2128-2140.
Nikitin N.O., Spirin D.S., Visheratin A.A., Kalyuzhnaya A.V. Statistics-based models of flood-causing cyclones for the Baltic Sea region. Procedia Computer Science. 2016. Vol. 101. pp. 272–281.
Kalyuzhnaya A.V., Visheratin A.A., Dudko A., Nasonov D.A., Boukhanovsky A.V. Synthetic storms reconstruction for coastal floods risks assessment. Journal of Computational Science. 2015. Vol. 9. pp. 112-117.
Kosukhin S.S., Kaluzhnaya A.V., Nikishova A.V., Boukhanovsky A.V. Special aspects of wind wave simulations for surge flood forecasting and prevention. Procedia Computer Science. 2015. Vol. 66. pp. 184-190.
Visheratin A.A., Nasonov D.A. ., Kaluzhnaya, A.V. ., Kosukhin, S.S. . A simulation platform for atmospheric phenomena study within coastal floods in Baltic sea area. International Multidisciplinary Scientific GeoConference-SGEM: 15th International Multidisciplinary Scientific Geoconference SGEM 2015. 2015. Vol. 1. No. 2. pp. 11-18.
Kaluzhnaya A.V., Boukhanovsky A.V. Computational uncertainty management for coastal flood prevention system. Procedia Computer Science. 2015. Vol. 51. pp. 2317-2326.
Kaluzhnaya A.V., Nasonov D.A., Boukhanovsky A.V. . Ensemble risk assessment for flood warning system in st. Petersburg. 14th International Multidisciplinary Scientific Geoconference SGEM 2014. GeoConference on Informatics, Geoinformatics and Remote Sensing. Conference Proceedings. 2014. Vol. 1. No. 3. pp. 247-256.
Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Nasonov D. Problem solving environment for development and maintenance of St. Petersburg’s Flood Warning System. Procedia Computer Science. 2014. Vol. 29. pp. 1667–1676.
Ivanov, S.V. ., Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Boukhanovsky, A.V. . Erratum to Simulation-based collaborative decision support for surge floods prevention in St. Petersburg [J. Comput. Sci. 3 (2012) 450-455]. Journal of Computational Science. 2013. Vol. 4. No. 5. pp. 438.
Ivanov S.V., Kosukhin S.S., Kaluzhnaya A.V., Boukhanovsky A.V. Simulation-based collaborative decision support for surge floods prevention in St. Petersburg. Journal of Computational Science. 2012. Vol. 3. No. 6. pp. 450-455.
Мостаманди М.В., Насонов Д.А., Калюжная А.В., Бухановский А.В. Ансамблевые прогнозы экстремальных гидрометеорологических явлений в распределенной среде CLAVIRE. Известия высших учебных заведений. Приборостроение. 2011. Т. 54. № 10. С. 100-102.
Российская Федерация
Российская Федерация, Санкт-Петербург
Греция, Афины