Исследование эффективности эволюционных операторов в задачах оптимизации матричных генотипов
Kaluzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.V. Automatic Evolutionary Learning of Composite Models With Knowledge Enrichment. GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2020. pp. 43-44.
Никитин Н.О., Полонская Я.С., Калюжная А.В. Интеллектуальное проектирование защитных сооружений на шельфе с применением моделей морской среды и методов оптимизации. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 141-142.
Maslyaev M., Hvatov A., Kalyuzhnaya A. Data-Driven Partial Differential Equations Discovery Approach for the Noised Multi-dimensional Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12138 LNCS. pp. 86-100.
Калюжная А.В., Никитин Н.О., Вычужанин П.В., Хватов А.А. Технологии прикладного искусcтвенного интеллекта в задачах численного моделирования процессов в океане. Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.). 2020. С. 81-82.
Deeva I., Andriushchenko P.D., Kalyuzhnaya A.V., Boukhanovsky A.V. Bayesian Networks-based personal data synthesis. ACM International Conference Proceeding Series. 2020. pp. 6-11.
Sarafanov M., Kazakov E.E., Nikitin N.O., Kalyuzhnaya A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI. Remote Sensing. 2020. Vol. 12. No. 23. pp. 3865.
Применение методов машинного обучения для заполнения пропусков в данных дистанционного зондирования
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kaluzhnaya A.V. Structural Evolutionary Learning for Composite Classification Models. Procedia Computer Science. 2020. Vol. 178. pp. 414-423.
Khvatov A.A., Nikitin N., Kaluzhnaya A.V., Kosukhin S.S. Adaptation of NEMO-LIM3 model for multigrid high-resolution Arctic simulation. Ocean Modelling. 2019. Vol. 141. pp. 101427.
Uteuov A., Kalyuzhnaya A.V., Boukhanovsky A.V. The cities weather forecasting by crowdsourced atmospheric data. Procedia Computer Science. 2019. Vol. 156. pp. 347-356.
Vychuzhanin P., Nikitin N.O., Kalyuzhnaya A.V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11536. pp. 614-627.
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study. GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion. 2019. pp. 1583-1591.
Вычужанин П.В., Калюжная А.В. Робастная калибровка параметров численной модели ветрового волнения SWAN. Альманах научных работ молодых ученых Университета ИТМО. 2019. Т. 3. С. 151-155.
Технологии поддержки жизненного цикла комплекса гидрометеорологических моделей
Обнаружение аномалий в результатах гидрометеорологического моделирования с использованием сверточных нейронных сетей
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Data-driven partial derivative equations discovery with evolutionary approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11540 LNCS. pp. 635-641.
Deeva I., Nikitin N.O., Kalyuzhnaya A.V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression. Procedia Computer Science. 2019. Vol. 156. pp. 357-366.
Uteuov A., Kalyuzhnaya A. Combined document embedding and hierarchical topic model for social media texts analysis. Procedia Computer Science. 2018. Vol. 136. pp. 293-303.
Araya-Lopez J., Nikitin N.O., Kalyuzhnaya A.V. Case-adaptive ensemble technique for met-ocean data restoration. Procedia Computer Science. 2018. Vol. 136. pp. 311-320.
Vychuzhanin P., Hvatov A., Kalyuzhnaya A.V. Anomalies Detection in Metocean Simulation Results Using Convolutional Neural Networks. Procedia Computer Science. 2018. Vol. 136. pp. 321-330.
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification. Complexity. 2018. pp. 5870987.
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. 2018. pp. 255-256.
Kalyuzhnaya A.V., Nasonov D., Ivanov S.V., Kosukhin S.S., Boukhanovsky A.V. Towards a scenario-based solution for extreme metocean event simulation applying urgent computing. Future Generation Computer Systems. 2018. Vol. 79. No. Part.2. pp. 604-617.
Вычужанин П.В., Калюжная А.В. Разработка системы автоматизированной верификации гидрометеорологической вычислительной системы. Альманах научных работ молодых ученых Университета ИТМО. 2018. Т. 2. С. 114-117.
Nikitin N.O., Kalyuzhnaya A.V., Bochenina K., Kudryashov A., Uteuov A., Derevitskii I., Boukhanovsky A.V. Evolutionary ensemble approach for behavioral credit scoring. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 825-831.
Kalyuzhnaya A.V., Nikitin N.O., Butakov N.A., Nasonov D.A. Precedent-based approach for the identification of deviant behavior in social media. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 846-852.
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Эволюционный подход к управлению качеством ансамблевых моделей
Разработка системы автоматизированной верификации гидрометеорологической вычислительной системы //Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО, 2018. - 2018
Тематическое моделирование финансовых привычек и интересов пользователей в социальных сетях
Lopez J.L., Uteuov A., Kalyuzhnaya A.V. Quality control and data restoration of metocean Arctic data. Procedia Computer Science. 2017. Vol. 119. pp. 315-324.
Gusarov A., Kalyuzhnaya A.V., Boukhanovsky A.V. Spatially adaptive ensemble optimal interpolation of in-situ observations into numerical vector field models. Procedia Computer Science. 2017. Vol. 119. pp. 325-333.
Nikishova A.V., Kalyuzhnaya A.V., Boukhanovsky A.V., Khukstra A. Uncertainty quantification and sensitivity analysis applied to the wind wave model SWAN. Environmental Modelling and Software. 2017. Vol. 95. pp. 344-357.
Наводнения в Санкт-Петербурге: история и современность
Noymanee J., Nikitin N.O., Kaluzhnaya A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin. Procedia Computer Science. 2017. Vol. 119. pp. 288-297.
Nikitin N.O., Spirin D.S., Visheratin A.A., Kalyuzhnaya A.V. Statistics-based models of flood-causing cyclones for the Baltic Sea region. Procedia Computer Science. 2016. Vol. 101. pp. 272–281.
Araya-Lopez J., Kaluzhnaya A.V., Kosukhin S.S., Ivanov S.V. Data Quality Control for St. Petersburg flood warning system. Procedia Computer Science. 2016. Vol. 80. pp. 2128-2140.
Visheratin A.A., Nasonov D.A. ., Kaluzhnaya, A.V. ., Kosukhin, S.S. . A simulation platform for atmospheric phenomena study within coastal floods in Baltic sea area. International Multidisciplinary Scientific GeoConference-SGEM: 15th International Multidisciplinary Scientific Geoconference SGEM 2015. 2015. Vol. 1. No. 2. pp. 11-18.
Kosukhin S.S., Kaluzhnaya A.V., Nikishova A.V., Boukhanovsky A.V. Special aspects of wind wave simulations for surge flood forecasting and prevention. Procedia Computer Science. 2015. Vol. 66. pp. 184-190.
Kalyuzhnaya A.V., Visheratin A.A., Dudko A., Nasonov D.A., Boukhanovsky A.V. Synthetic storms reconstruction for coastal floods risks assessment. Journal of Computational Science. 2015. Vol. 9. pp. 112-117.
Kaluzhnaya A.V., Boukhanovsky A.V. Computational uncertainty management for coastal flood prevention system. Procedia Computer Science. 2015. Vol. 51. pp. 2317-2326.
Kaluzhnaya A.V., Nasonov D.A., Boukhanovsky A.V. . Ensemble risk assessment for flood warning system in st. Petersburg. 14th International Multidisciplinary Scientific Geoconference SGEM 2014. GeoConference on Informatics, Geoinformatics and Remote Sensing. Conference Proceedings. 2014. Vol. 1. No. 3. pp. 247-256.
Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Nasonov D. Problem solving environment for development and maintenance of St. Petersburg’s Flood Warning System. Procedia Computer Science. 2014. Vol. 29. pp. 1667–1676.
Ivanov, S.V. ., Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Boukhanovsky, A.V. . Erratum to Simulation-based collaborative decision support for surge floods prevention in St. Petersburg [J. Comput. Sci. 3 (2012) 450-455]. Journal of Computational Science. 2013. Vol. 4. No. 5. pp. 438.
Ivanov S.V., Kosukhin S.S., Kaluzhnaya A.V., Boukhanovsky A.V. Simulation-based collaborative decision support for surge floods prevention in St. Petersburg. Journal of Computational Science. 2012. Vol. 3. No. 6. pp. 450-455.
Мостаманди М.В., Насонов Д.А., Калюжная А.В., Бухановский А.В. Ансамблевые прогнозы экстремальных гидрометеорологических явлений в распределенной среде CLAVIRE. Известия высших учебных заведений. Приборостроение. 2011. Т. 54. № 10. С. 100-102.
Российская Федерация, Санкт-Петербург
Греция, Афины