Fu X., Krzhizhanovskaya V., Яковлев А.Н., Kovalchuk S. Modelling Diversity in Hospital Strategies in City-Scale Ambulance Dispatching with Coupled Game-Theoretic Model and Discrete-Event Simulation. Journal of Biomedical Informatics. 2025. Vol. 162. pp. 104777.
Moiseev I., Balabaeva K., Kovalchuk S. Open and Extensible Benchmark for Explainable Artificial Intelligence Methods. Algorithms. 2025. Vol. 18. No. 2. pp. 85.
Пименов А., Kovalchuk S. Evaluation and Prediction of Human Software Developers’ Perception of Large Language Models Suggestions Using GitHub Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2025. Vol. 15406. pp. 347-361.
Федрушков Д.В. Improving project-level code generation using combined relevant context. Lecture Notes in Computer Science (LNCS). 2025. pp. tbd.
Этическое обеспечение исследований с участием людей для разработчиков роботов, приборов и технологий
Li C., Petruchik O., Grishanina E.O., Kovalchuk S.V. Multi-Agent Norm Perception and Induction in Distributed Healthcare. arXiv.org [база препринтов]. 2025. pp. https://doi.org/10.48550/arXiv.2412.18454.
Солдатов А.Н., Солдатов И.К., Ковальчук С.В. Моделирование восприятия рекомендаций системы поддержки принятия врачебных решений на основе предсказательного моделирования при проведении профилактических осмотров врачами-стоматологами [Modeling perceiving of recommendations provided by clinical decision support system based on predictive modeling within dental preventive screening]. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2024. Т. 24. № 2. С. 335-338.
Kovalchuk S.V., Ireddy A.T. Prediction of Users Perceptional State for Human-Centric Decision Support Systems in Complex Domains through Implicit Cognitive State Modeling. Proceedings of the Annual Meeting of the Cognitive Science Society. 2024. Vol. 46. pp. 3257-3264.
Fedrushkov D., Kovalchuk S., Lomshakov V., Aliev A. Beam Search for Improvement of Code Generation in Answering Programming Questions with Code. Communications in Computer and Information Science. 2024. Vol. 2241. pp. 194-208.
Ковальчук С.В., Иредди А. Моделирование индивидуальных когнитивных состояний оператора в рамках взаимодействия человек-искусственный интеллект при работе с системами поддержки принятия решений в сложных предметных областях. X Международная конференция по когнитивной науке (Пятигорск, 26-30 июня 2024 г.) [тезисы докладов]. 2024. Т. Часть 1. С. 144-146.
Ireddy A.T., Kovalchuk S.V. Modelling Information Perceiving within Clinical Decision Support using Inverse Reinforcement Learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2024. Vol. 14835. pp. 210–223.
Gorbatovski A.V., Razin A.D., Aliev A.A., Kovalchuk S.V. Improving question answering in programming domain with pretrained language model finetuning using structured diverse online forum data. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2024. Vol. 24. No. 6. pp. 1024-1034.
Li C., Petruchik O., Grishanina E., Kovalchuk S. Modelling of practice sharing in complex distributed healthcare system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2024. Vol. 14835. pp. 224-238.
Towards Modeling of Distributed Intelligence Systems in Modern Healthcare.Сборник тезисов докладов конгресса молодых ученых (XIII Всероссийский конгресс молодых ученых, 8-11апреля 2024г.) [электронное издание]
Gorbatovski A., Kovalchuk S. Reinforcement Learning for Question Answering in Programming domain using Public Community Scoring as a Human Feedback. AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems. 2024. pp. 2294–2296.
Kovalchuk S.V., Li C., Кубряк О.В. Towards Explaining Emergent Behavior in Multi-Agent Systems Micro-Parameter Space Structuring with Feature Importance in Heatbug Model. The 23rd IEEE/WIC International Conference on Web Intelligence and Intelligent Agent Technology. 2024. pp. 6.
Ireddy A.T., Kovalchuk S.V., Beloglazov L.A., Zatsepina E.А., Ионов М.В. Evaluating Perceived Complexity of Process Models from a Targeted Survey of Healthcare Domain Specialists. International Conference on Mathematical Modeling and Supercomputer Technologies. 2024. pp. in press.
Кубряк О.В., Ковальчук С.В. Искусственный сенсорный компонент в системе человек - машина с комбинированной обратной связью. Проблемы управления. 2024. № 6. С. 27-37.
Моделирование индивидуальных когнитивных состояний оператора в рамках взаимодействия человек-искусственный интеллект при работе с системами поддержки принятия решений в сложных предметных областях
Pogrebnoi D., Funkner A., Kovalchuk S. RuMedSpellchecker: A new approach for advanced spelling error correction in Russian electronic health records. Journal of Computational Science. 2024. Vol. 82. pp. 102393.
Kubryak O., Kovalchuk S.V., Bagdasaryan N.G. Assessment of Cognitive Behavioral Characteristics in Intelligent Systems with Predictive Ability and Computing Power. Philosophies. 2023. Vol. 8. No. 5. pp. 75.
Isakov T., Kovalchuk S. Methodology of event extraction from unstructured medical texts on the example of the Russian language. Procedia Computer Science. 2023. Vol. 229. pp. 101-108.
Zhdanova E., Korneev I., Kovalchuk S. Predictive modeling of multistep clinical pathways: application to infertility treatment process. Procedia Computer Science. 2023. Vol. 229. pp. 272-283.
Pogrebnoi D., Funkner A., Kovalchuk S. RuMedSpellchecker: Correcting Spelling Errors for Natural Russian Language in Electronic Health Records Using Machine Learning Techniques. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2023. Vol. 10475. pp. 213-227.
Kabyshev M.V., Kovalchuk S.V. Analysis and control of user engagement in personalized mobile assisting software for chronic disease patients. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2023. Vol. 23. No. 2(144). pp. 331-339.
Kovalchuk S., Fedrushkov D., Lomshakov V., Aliev A. Test-based and metric-based evaluation of code generation models for practical question answering. 2023 International Conference on Code Quality (ICCQ). 2023. pp. 73-86.
Gorbatovski A., Kovalchuk S. Bayesian Networks for Named Entity Prediction in Programming Community Question Answering. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2023. Vol. 14074. pp. 282–289.
Abuhay T., Robinson S., Mamuye A., Kovalchuk S.V. Machine learning integrated patient flow simulation: why and how?. Journal of Simulation. 2023. Vol. 17. No. 5. pp. 580-593.
Rvanova L., Kovalchuk S. Automatic Structuring of Topics for Natural Language Generation in Community Question Answering in Programming Domain. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2023. Vol. 14074. pp. 322–329.
Rvanova L., Kovalchuk S.V. Using regular expressions for thematic classification in the task of question answering. Сборник трудов XII Конгресса молодых ученых (Санкт-Петербург, 3-6 апреля 2023 г.). 2023. Vol. 4. No. 1. pp. 57-59.
Ireddy A.T., Kovalchuk S.V. An Experimental Outlook on Quality Metrics for Process Modelling: A Systematic Review and Meta Analysis. Algorithms. 2023. Vol. 16. No. 6. pp. 295.
Elkhovskaya L.O., Kshenin A.D., Balakhontceva M.A., Ionov M.V., Kovalchuk S.V. Extending Process Discovery with Model Complexity Optimization and Cyclic States Identification: Application to Healthcare Processes. Algorithms. 2023. Vol. 16. No. 1. pp. 57.
Babikov I., Kovalchuk S., Soldatov I. Semi-supervised method for improving general-purpose and domain-specific textual corpora labels. Procedia Computer Science. 2023. Vol. 229. pp. 168-176.
Рванова Л. (науч. рук. Ковальчук С.В.) Automatic Question Answering Using Topic Modeling in Programming Domain
Kopanitsa G., Metsker O., Kovalchuk S. Machine Learning Methods for Pregnancy and Childbirth Risk Management. Journal of Personalized Medicine. 2023. Vol. 13. No. 6. pp. 975.
Улучшение генеративных систем ответов на вопросы сообщества, в области программирования, основанные на обратной связи людей
Funkner A.A., Yakovlev A., Kovalchuk S. Surrogate-assisted performance prediction for data-driven knowledge discovery algorithms: Application to evolutionary modeling of clinical pathways. Journal of Computational Science. 2022. Vol. 59. pp. 101562.
Rezvykh A.D., Ovcharenko A., Lemeshkin R.N., Kovalchuk S.V. . Modeling the workflow of a field hospital in earthquake conditions. Procedia Computer Science. 2022. Vol. 212. pp. 330-339.
Ионов М.В., Болгова Е.В., Звартау Н.Э., Авдонина Н.Г., Балахонцева М.А., Ковальчук С.В., Конради А.О. Внедрение системы поддержки принятия решений для повышения качества медицинских данных пациентов с артериальной гипертензией [Implementation of a clinical decision support system to improve the medical data quality for hypertensive patients]. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2022. Т. 22. № 1(137). С. 217-222.
Detkov N., Balabaeva K., Kovalchuk S.V. Exploring the Relationship Between Error and Interpretation of the Segmentation Model's Prediction. Procedia Computer Science. 2022. Vol. 212. pp. 122-131.
Pavlovskii V., Derevitskii I., Kovalchuk S.V. Hybrid genetic predictive modeling for finding optimal multipurpose multicomponent therapy. Journal of Computational Science. 2022. Vol. 63. pp. 101772.
Kovalchuk S.V., Krzhizhanovskaya V.V., Paszynski M., Kranzlmuller D., Dongarra J., Sloot P. Computational science for a better future. Journal of Computational Science. 2022. Vol. 62. pp. 101745.
Kovalchuk S.V., Kopanitsa G.D., Derevitskii I., Matveev G.A., Savitskaya D.A. Three-stage intelligent support of clinical decision making for higher trust, validity, and explainability. Journal of Biomedical Informatics. 2022. Vol. 127. pp. 104013.
Koshman V., Funkner A., Kovalchuk S. An Unsupervised Approach to Structuring and Analyzing Repetitive Semantic Structures in Free Text of Electronic Medical Records. Journal of Personalized Medicine. 2022. Vol. 12. No. 1. pp. 25.
Babikov I., Kovalchuk S., Soldatov I., Grebnev G. Structuring Research Directions in Medical Domain with Topic Modeling: Application for PhD Theses Synopses in Dentistry. Studies in health technology and informatics. 2022. Vol. 299. pp. 229-234.
Derevitskii I., Mramorov N.D., Usoltsev S., Kovalchuk S.V. Hybrid Bayesian Network-Based Modeling: COVID-19-Pneumonia Case. Journal of Personalized Medicine. 2022. Vol. 12. No. 8. pp. 1325.
Kopanitsa G., Kovalchuk S. Study of the User Behaviour Caused by Automatic Recommendation Systems Call to Action. Studies in health technology and informatics. 2022. Vol. 299. pp. 89-96.
Balabaeva K., Kovalchuk S. Neural Additive Models for Explainable Heart Attack Prediction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2022. Vol. 13352. pp. 113-121.
COVID-19 Treatment Process Identification: A Case Study in Russian Hospital for Cardiology
Study of the user behaviour caused by automatic symptom checkers call to action
Funkner A.A., Zhurman D., Kovalchuk S. Extraction of Temporal Structures for Clinical Events in Unlabeled Free-Text Electronic Health Records in Russian. Studies in health technology and informatics. 2021. Vol. 287. pp. 55-56.
Funkner A.A., Egorov M., Fokin S.A., Orlov G., Kovalchuk S. Citywide quality of health information system through text mining of electronic health records. Applied Network Science. 2021. Vol. 6. No. 1. pp. 53.
Mramorov N., Derevitskii I., Kovalchuk S. Predictive modeling of COVID and nonCOVID pneumonia trajectories. Studies in health technology and informatics. 2021. Vol. 285. pp. 112-117.
Kanonirov A., Balabaeva K.Y., Kovalchuk S. Statistical inference for clustering results interpretation in clinical practice. Studies in health technology and informatics. 2021. Vol. 285. pp. 100-105.
Kopanitsa G.D., Derevitckii I.V., Savitskaya D.A., Kovalchuk S. Assessing acceptance level of a hybrid clinical decision support systems. Studies in health technology and informatics. 2021. Vol. 287. pp. 18-22.
Koshman V., Funkner A.A., Kovalchuk S. An unsupervised approach to structuring and analyzing repetitive semantic structures in free text of electronic medical records. Studies in health technology and informatics. 2021. Vol. 285. pp. 94-99.
Kshenin A.D., Kovalchuk S. Data-driven modeling of complex business process in heterogeneous environment of healthcare organization with health information systems. Studies in health technology and informatics. 2021. Vol. 285. pp. 118-123.
Milykh S., Kovalchuk S. Treatment trajectories graph compression algorithm based on cliques. Studies in health technology and informatics. 2021. Vol. 285. pp. 300-305.
Balabaeva K.Y., Kovalchuk S. Comparison of Efficiency, Stability and Interpretability of Feature Selection Methods for Multiclassification Task on Medical Tabular Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12744. pp. 623-633.
Pavlovskii V., Derevitckii I.V., Kovalchuk S. Hybrid Predictive Modelling for Finding Optimal Multipurpose Multicomponent Therapy. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12744. pp. 479-793.
Разработка системы мультиагентного имитационного моделирования бизнес-процессов в крупной компании
Методы и технологии масштабируемости алгоритмов интеллектуального анализа медицинских текстов
Nikolaeva K., Elkhovskaya L., Kovalchuk S. Patient measurements simulation and event processing in telemedicine systems. Procedia Computer Science. 2021. Vol. 193. pp. 122-130.
Derevitskii I., Savitskaya D.A., Babenko A.Y., Kovalchuk S.V. Hybrid predictive modelling: Thyrotoxic atrial fibrillation case. Journal of Computational Science. 2021. Vol. 51. pp. 101365.
Elkhovskaya L., Kovalchuk S. Feature Engineering with Process Mining Technique for Patient State Predictions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2021. Vol. 12744. pp. 584-592.
Balabaeva K.Y., Kovalchuk S.V. Clustering Results Interpretation of Continuous Variables Using Bayesian Inference. Studies in health technology and informatics. 2021. Vol. 281. pp. 477-481.
Abuhay T.M., Robinson S., Mamuye A., Kovalchuk S.V. Why machine learning integrated patient flow simulation?. 10th Operational Research Society Simulation Workshop, SW 2021. 2021. pp. 375-384.
Kovalchuk S.V., Krzhizhanovskaya V.V. ., Paszynski M., Zavodszky G., Lees M.H., Dongarra J., Sloot P. 20 years of computational science: Selected papers from 2020 International Conference on Computational Science. Journal of Computational Science. 2021. Vol. 53. pp. 101395.
Ponomartseva D., Derevitckii I.V., Kovalchuk S., Babenko A. Prediction model for thyrotoxic atrial fibrillation: a retrospective study. BMC Endocrine Disorders. 2021. Vol. 21. No. 1. pp. 150.
Kopanitsa G.D., Metsker O., Bolgova E.V., Kovalchuk S. Lifestyle cancer survival predictors: Influence of vegetarian diet on the relapse of endometrial cancer. Studies in health technology and informatics. 2021. Vol. 285. pp. 193-198.
Bukhanov N.V., Trudkov P., Vinogradova E., Derevitckii I.V., Balabaeva K.I., Funkner A., Kovalchuk S.V. Computational approach for data-driven mining of upstream value-added structures. EAGE/AAPG Digital Subsurface for Asia Pacific Conference 2020. 2020. pp. 1-5.
Leonenko V.N., Kovalchuk S.V. Analyzing the spatial distribution of individuals predisposed to arterial hypertension in Saint Petersburg using synthetic populations. ITM Web of Conferences. 2020. Vol. 31. pp. 03002.
Derevitskii I.V., Kovalchuk S.V. . Machine Learning-Based Factor Analysis of Carbohydrate Metabolism Compensation for TDM2 Patients. Studies in health technology and informatics. 2020. Vol. 273. pp. 123-128.
Bolgova K.V., Kovalchuk S.V., Balakhontceva M.A., Zvartau N.E., Metsker O.G. Human Computer Interaction During Clinical Decision Support With Electronic Health Records Improvement. International Journal of E-Health and Medical Communications. 2020. Vol. 11. No. 1. pp. 93-106.
Abuhay T.M., Metsker O.G., Yakovlev A.N., Kovalchuk S.V. Constructing holistic patient flow simulation using system approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12140 LNCS. pp. 418-429.
Derevitskii I.V., Savitskaya D.A., Babenko A.Y., Kovalchuk S.V. The atrial fibrillation risk score for hyperthyroidism patients. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12140 LNCS. pp. 495-508.
Abuhay T.M., Nigatie Y.G., Metsker O., Yakovlev A.N., Kovalchuk S.V. Investigating coordination of hospital departments in delivering healthcare for acute coronary syndrome patients using data-driven network analysis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12140 LNCS. pp. 430-440.
Бухановский А.В., Иванов С.В., Ковальчук С.В., Нечаев Ю.И. Онтологическая система знаний и вычислительных ресурсов современных интеллектуальных технологий. Онтология проектирования. 2020. Т. 10. № 1(35). С. 22-33.
Funkner A.A., Kovalchuk S.V. Time Expressions Identification Without Human-Labeled Corpus for Clinical Text Mining in Russian. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12140 LNCS. pp. 591-602.
Kovalchuk S.V., Funkner A.A., Balabaeva K.Y., Derevitskii I.V., Fonin V.V., Bukhanov N.V. Towards Modeling of Information Processing Within Business-Processes of Service-Providing Organizations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12137 LNCS. pp. 667-675.
Funkner A., Balabaeva K., Kovalchuk S. Negation Detection for Clinical Text Mining in Russian. Studies in health technology and informatics. 2020. Vol. 270. pp. 342-346.
Balabaeva K., Kovalchuk S.V. Experiencer detection and automated extraction of a family disease tree from medical texts in russian language. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12140 LNCS. pp. 603-612.
Моделирование бизнес-процессов с высоким влиянием человеческого фактора на разнородных данных корпоративных информационных систем
Metsker O., Magoev K., Yakovlev A., Yanishevskiy S., Kopanitsa G., Kovalchuk S., Krzhizhanovskaya V.V. Identification of risk factors for patients with diabetes: diabetic polyneuropathy case study. BMC Medical Informatics and Decision Making. 2020. Vol. 20. No. 1. pp. 201.
Balabaeva K.Y., Funkner A., Kovalchuk S. Automated Spelling Correction for Clinical Text Mining in Russian. Studies in health technology and informatics. 2020. Vol. 270. pp. 43-47.
Balabaeva K.Y., Kovalchuk S.V. Post-hoc Interpretation of Clinical Pathways Clustering using Bayesian Inference. Procedia Computer Science. 2020. Vol. 178. pp. 264-273.
Balabaeva K.Y., Akmadieva L., Kovalchuk S.V. Optimal Wells Placement to Maximize the Field Coverage Using Derivative-Free Optimization. Procedia Computer Science. 2020. Vol. 178. pp. 65-74.
Guleva V.Y., Shikov E., Bochenina K.O., Kovalchuk S.V., Alodjants A.P., Bukhanovsky A.V. . Emerging complexity in distributed intelligent systems. Entropy. 2020. Vol. 22. No. 12. pp. 1437.
Derevitckii I.V., Kovalchuk S.V. Machine Learning-Based Predictive Modeling of Complications of Chronic Diabetes. Procedia Computer Science. 2020. Vol. 178. pp. 274-283.
Kovalchuk S.V., Krzhizhanovskaya V.V., Sloot P. 20 years of computational Science. Journal of Computational Science. 2020. Vol. 46. pp. 101187.
Обработка медицинских текстов на естественном языке
Семантический анализ корпусов текстов с помощью методов тематического моделирования
Funkner A.A., Zvartau N.E., Kovalchuk S.V. Motif identification in vital signs of chronic patients. Procedia Computer Science. 2019. Vol. 156. pp. 105-113.
Kabyshev M.V., Kovalchuk S.V. . Development of personalized mobile assistant for chronic disease patients: diabetes mellitus case study. Procedia Computer Science. 2019. Vol. 156. pp. 123-133.
Derevitskii I., Funkner A., Kovalchuk S., Metsker O. Graph-Based Predictive Modelling of Chronic Disease Development: Type 2 DM Case Study. Studies in health technology and informatics. 2019. Vol. 261. pp. 150-155.
Kovalchuk S.V., Krzhizhanovskaya V.V. ., Shi Y., Fu H., Lees M.H., Dongarra J., Sloot P. Science at the Intersection of Data, Modelling, and Computation. Journal of Computational Science. 2019. Vol. 34. pp. 117-119.
Metsker O., Trofimov E., Sikorskiy S., Kovalchuk S.V. Text and Data Mining Techniques in Judgment Open Data Analysis for Administrative Practice Control. Communications in Computer and Information Science. 2019. Vol. 947. pp. 169-180.
Metsker O., Yakovlev A., Ilin A.E., Kovalchuk S.V. Echocardiography Population Study in Russian Federation for 4P Medicine Using Machine Learning. Studies in health technology and informatics. 2019. Vol. 261. pp. 137-142.
Balabaeva K., Kovalchuk S.V. Comparison of Temporal and Non-Temporal Features Effect on Machine Learning Models Quality and Interpretability for Chronic Heart Failure Patients. Procedia Computer Science. 2019. Vol. 156. pp. 87-96.
Elkhovskaya L., Kabyshev M., Funkner A., Balakhontceva M., Fonin V., Kovalchuk S. Personalized Assistance for Patients with Chronic Diseases Through Multi-Level Distributed Healthcare Process Assessment. Studies in health technology and informatics. 2019. Vol. 261. pp. 309-312.
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study. GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion. 2019. pp. 1583-1591.
Ionov M., Zvartau N., Semakova A.A., Bolgova E., Kovalchuk S.V., Boukhanovsky A.V., Konradi A.O. Response rate and patients characteristics associated with effective antihypertensive monotherapy. Journal of Hypertension. 2019. Vol. 37. pp. E105.
Metsker O., Kesarev S., Bolgova E., Golubev K., Karsakov A., Yakovlev A., Kovalchuk S. Modelling and Analysis of Complex Patient-Treatment Process Using GraphMiner Toolbox. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11540 LNCS. pp. 674-680.
Функнер А.А., Ковальчук С.В. Суррогатная настройка эволюционных моделей на примере метода идентификации клинических путей. Международная школа-конференция "Высокопроизводительные вычисления и искусственный интеллект"". 2019.
Metsker O.G., Sikorskiy S.A., Semakova A.A., Krikunov A., Balakhontceva M.A., Melnikova N.B., Kovalchuk S.V. Holistic Monitoring and Analysis of Healthcare Processes through Public Internet Data Collection. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11551. pp. 42-50.
Balabaeva K.I., Kovalchuk S.V., Metsker O. Dynamic features impact on the quality of chronic heart failure predictive modelling. Studies in health technology and informatics. 2019. Vol. 261. pp. 179-184.
Mikhailov Y.I., Budrin A.G., Budrina E.V., Kovalchuk S.V., Soldatova A.V., Lemeshkin R.N. Informational Support of Automated Quality Management Systems for Medical Service Provision Based on the Prognosis of the Patient Affects Outcome in Social Emergencies. 2019 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). 2019. pp. 284-287.
Derevitskii I.V., Kovalchuk S.V. Analysis course of the disease of type 2 diabetes patients using Markov chains and clustering methods. Procedia Computer Science. 2019. Vol. 156. pp. 114-122.
Kovalchuk S.V., Moskalenko M.A., Yakovlev A.N. Towards Model-based Policy Elaboration on City Scale using Game Theory: Application to Ambulance Dispatching. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10860. pp. 404-417.
Kovalchuk S.V. ., Funkner A.A., Metsker O.G., Yakovlev A.N. Simulation of Patient Flow in multiple Healthcare Units using Process and Data Mining Techniques for Model Identification. Journal of Biomedical Informatics. 2018. Vol. 82. pp. 128-142.
Zvartau N., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A. Prediction Of Blood Pressure-lowering Efficacy Of Antihypertensive Treatment Depending On Individual Patient Characteristics: Initial Model. Journal of Hypertension. 2018. Vol. 36. No. Suppl.1. pp. e21.
Sikorskiy S., Metsker O., Yakovlev A., Kovalchuk S. Machine Learning Based Text Mining in Electronic Health Records: Cardiovascular Patient Cases. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 10862. pp. 818-824.
Abuhay T.M., Nigatie Y.G., Metsker O.G., Kovalchuk S.V. . Investigating Application of Change Point Analysis in Monitoring Health Condition of Acute Coronary Syndrome Patients. Procedia Computer Science. 2018. Vol. 136. pp. 408-415.
Butakov N., Petrov M., Mukhina K., Nasonov D.A., Kovalchuk S.V. Unified domain-specific language for collecting and processing data of social media. Journal of Intelligent Information Systems. 2018. Vol. 51. No. 2. pp. 389-414.
Metsker O., Yakovlev A., Bolgova E.V., Vasin A., Kovalchuk S. Identification of Pathophysiological Subclinical Variances During Complex Treatment Process of Cardiovascular Patients. Procedia Computer Science. 2018. Vol. 138. pp. 161-168.
Семакова А.А., Звартау Н.Э., Ковальчук С.В., Бухановский А.В. Многомасштабное популяционное моделирование процессов развития и лечения артериальной гипертензии. Известия высших учебных заведений. Приборостроение. 2018. Т. 61. № 10. С. 922-929.
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Fu X., Presbitero A., Kovalchuk S.V., Krzhizhanovskaya V.V. Coupling Game Theory and Discrete-Event Simulation for Model-Based Ambulance Dispatching. Procedia Computer Science. 2018. Vol. 136. pp. 398-407.
Magoev K., Krzhizhanovskaya V.V., Kovalchuk S.V. Application of clustering methods for detecting critical acute coronary syndrome patients. Procedia Computer Science. 2018. Vol. 136. pp. 370-379.
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification. GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion. 2018. pp. 255-256.
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification. Complexity. 2018. pp. 5870987.
Лемешкин Р.Н., Савченко И., Латыпов И.Ф., Жуков А., Крикунов А.В., Ковальчук С.В., Балахонцева М.А. Имитационное моделирование - инструмент научного изучения организации медицинского обеспечения войск (сил) в военных конфликтах и чрезвычайных ситуациях мирного времени. Медицина катастроф [Medicina Katastrof]. 2018. № 2(102). С. 5-10.
Абухай Т., Ковальчук С.В., Балахонцева М.А., Бухановский А.В. Моделирование, анализ и прогнозирование процессов оказания кардиологической помощи в стационаре. Известия высших учебных заведений. Приборостроение. 2018. Т. 61. № 8. С. 730-733.
Vaganov D., Funkner A., Kovalchuk S., Guleva V., Bochenina K. Forecasting Purchase Categories with Transition Graphs Using Financial and Social Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2018. Vol. 11185. pp. 439-454.
Yakovlev A., Metsker O., Kovalchuk S.V., Bologova E. Prediction of in-hospital mortality and length of stay in acute coronary syndrome patients using machine-learning methods. Journal of the American College of Cardiology. 2018. Vol. 71. No. 11(Suppl.). pp. A242.
Balakhontceva M.A., Funkner A.A., Semakova A.A., Metsker O.G., Zvartau N.E., Yakovlev A.N., Lutsenko A.E., Kovalchuk S.V. Holistic Modeling of Chronic Diseases for Recommendation Elaboration and Decision Making. Procedia Computer Science. 2018. Vol. 138. pp. 228-237.
Metsker O., Sikorsky S., Yakovlev A., Kovalchuk S. Dynamic mortality prediction using machine learning techniques for acute cardiovascular cases. Procedia Computer Science. 2018. Vol. 136. pp. 351-358.
Abuhay T.M., Nigatie Y.G., Kovalchuk S.V. Towards Predicting Trend of Scientific Research Topics using Topic Modeling. Procedia Computer Science. 2018. Vol. 136. pp. 304-310.
Kovalchuk S.V., Krzhizhanovskaya V.V., Koumoutsakos P., Chatzi E., Lees M.H., Dongarra J., Sloot P.M. The Art of Computational Science: Bridging Gaps – Forming Alloys. Journal of Computational Science. 2018. Vol. 26. pp. 190-192.
Abuhay T.M., Kovalchuk S.V., Bochenina K.O., Mbogo G., Visheratin A.A., Kampis G., Krzhizhanovskaya V.V., Lees M.H. Analysis of Publication Activity of Computational Science Society in 2001-2017 Using Topic Modelling and Graph Theory. Journal of Computational Science. 2018. Vol. 26. pp. 193-204.
Балахонцева М.А., Ковальчук С.В., Ховричев М.А., Кисляковский И.О. Интеллектуальная интеграция разнородных источников данных в задачах медицины и здравоохранения. Международная конференция по мягким вычислениям и измерениям. 2018. Т. 2. С. 31-33.
Kovalchuk S.V. ., Krotov E., Smirnov P.A. ., Nasonov D.A. ., Yakovlev A.N. Distributed Data-Driven Platform for Urgent Decision Making in Cardiological Ambulance Control. Future Generation Computer Systems. 2018. Vol. 79. No. Part.1. pp. 144-154.
Производственная (научно-исследовательская) и производственная (преддипломная) практика студентов: организация и проведение
Zvartau N., Krikunov A., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A. Six-year trends in antihypertensive monotherapy: focus on blood pressure control and originals/generics ratio. European heart journal. 2017. Vol. 38. No. Suppl. 1. pp. 359-359.
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ КОМПЛЕКСОВ ПРОГРАММ»
Zvartau N., Krikunov A., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A. Six-year trends in antyhypertensive monotherapy and blood pressure control in patients referred to specialized cardiological centre. Journal of Hypertension. 2017. Vol. 35. No. e-Supplement 2. pp. e102-e102.
Kovalchuk S.V., Abuhay T.M., Altintas I., Norman M., Lees M.H., Krzhizhanovskaya V.V., Dongarra J., Sloot P. Data through the Computational Lens. Journal of Computational Science. 2017. Vol. 20. pp. 81-84.
Bolgova E.V., Zvartau N.E., Kovalchuk S., Balakhontceva M., Metsker O.G. Improving Electronic Medical Records with Support of Human Computer Interaction in Medical Information Systems. Procedia Computer Science. 2017. Vol. 121. pp. 469-474.
Kisliakovskii I., Balakhontceva M., Kovalchuk S., Zvartau N., Konradi A. Towards a simulation-based framework for decision support in healthcare quality assessment. Procedia Computer Science. 2017. Vol. 119. pp. 207-214.
Zvartau N., Krikunov A., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A. Antihypertensive treatment in routine clinical practice of specialized cardiological centre: six-years trends. Journal of Hypertension. 2017. Vol. 35. No. e-Supplement 2. pp. e93-e93.
Имитационное моделирование нагрузки на группу ключевых отделений специализированного медицинского центра в ходе обслуживания разнородного потока пациентов на примере острого коронарного синдрома
Kashirin V.V. ., Lantseva A.A., Ivanov S.V., Kovalchuk S.V. ., Boukhanovsky A.V. Evolutionary simulation of complex networks' structures with specific functional properties. Journal of Applied Logic. 2017. Vol. 24. pp. 39-49.
Функнер А.А., Яковлев А.Н., Ковальчук С.В. Имитационное моделирование нагрузки на группу ключевых отделений специализированного медицинского центра в ходе обслуживания разнородного потока пациентов на примере острого коронарного синдрома. Труды Восьмой Всероссийской научно-практической конференции "Имитационное моделирование. Теория и практика" (ИММОД-2017) (СПб, 18-20октября 2017г.). 2017. С. 550-553.
Лемешкин Р.Н., Крикунов А.В., Ковальчук С.В., Савченко И. Имитационная модель оказания медицинской помощи раненым в медицинском отряде специального назначения в ходе ликвидации медико-санитарных последствий чрезвычайных ситуаций. Медико-биологические и социально-психологические проблемы безопасности в чрезвычайных ситуациях [Medico-Biological and Socio-Psychological Issues of Safety in Emergency Situations]. 2017. № 4. С. 20-33.
Chirkin A.M., Belloum A., Kovalchuk S.V., Makkes M., Melnik M.A., Visheratin A.A., Nasonov D.A. Execution Time Estimation for Workflow Scheduling. Future Generation Computer Systems. 2017. Vol. 75. pp. 376-387.
Kovalchuk S.V., Krikunov A.V., Knyazkov K.V., Boukhanovsky A.V. Classification issues within ensemble-based simulation: application to surge floods forecasting. Stochastic Environmental Research and Risk Assessment. 2017. Vol. 31. No. 5. pp. 1183-1197.
Palomares I., Kovalchuk S.V. . Multi-View Data approaches in Recommender Systems: an Overview: (Invited Paper). Procedia Computer Science. 2017. Vol. 119. pp. 30-41.
Funkner A., Yakovlev A., Kovalchuk S.V. . Data-driven modeling of clinical pathways using electronic health records. Procedia Computer Science. 2017. Vol. 121. pp. 835-842.
Funkner A.A., Yakovlev A.N., Kovalchuk S.V. . Towards Evolutionary Discovery of Typical Clinical Pathways in Electronic Health Records. Procedia Computer Science. 2017. Vol. 119. pp. 234-244.
Metsker O.G., Bolgova E.V., Yakovlev A.N., Funkner A.A., Kovalchuk S.V. . Pattern-based Mining in Electronic Health Records for Complex Clinical Process Analysis. Procedia Computer Science. 2017. Vol. 119. pp. 197-206.
Abuhay T.M., Kovalchuk S.V. ., Bochenina K.O., Kampis G., Krzhizhanovskaya V.V. ., Lees M.H. Analysis of Computational Science Papers from ICCS 2001-2016 using Topic Modeling and Graph Theory. Procedia Computer Science. 2017. Vol. 108. pp. 7-17.
Kovalchuk S.V. ., Funkner A., Metsker O., Yakovlev A. Data-driven modeling and simulation of complex healthcare environment for p4 medicine. Исследования по геоинформатике: труды геофизического центра РАН. 2017. Vol. 5. No. 1. pp. 144.
Bukhanov N., Balakhontceva M., Kovalchuk S., Zvartau N., Konradi A. Multiscale modeling of comorbidity relations in hypertensive outpatients. Procedia Computer Science. 2017. Vol. 121. pp. 446-450.
Derevitskiy I., Krotov E., Voloshin D., Yakovlev A., Kovalchuk S.V., Karbovskii V. Simulation of emergency care for patients with ACS in Saint Petersburg for ambulance decision making. Procedia Computer Science. 2017. Vol. 108. pp. 2210-2219.
Zvartau N., Krikunov A.V., Semakova A.A., Bolgova E.V., Kovalchuk S.V. ., Bukhanovsky A.V. . Five-year trends in specific risk factors in hypertensive patients reffered to specialized cardiological centre. European heart journal. 2016. Vol. 37. No. Suppl.1. pp. 66-67.
Krikunov A.V., Bolgova E.V., Krotov V., Abukhai T., Yakovlev A.N., Kovalchuk S.V. Complex data-driven predictive modeling in personalized clinical decision support for acute coronary syndrome episodes. Procedia Computer Science. 2016. Vol. 80. pp. 518-529.
Abuhay T.M., Krikunov A.V., Bolgova E.V., Ratova L.G., Kovalchuk S.V. Simulation of Patient Flow and Load of Departments in a Specialized Medical Center. Procedia Computer Science. 2016. Vol. 101. pp. 143–151.
Zvartau N., Krikunov A., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A.O. Five-years trends in demographic chcracteristics of hypertensive patients referred to specialized cardiological centre: age and gender. Journal of Hypertension. 2016. Vol. 34. No. Suppl.2. pp. e62.
Zvartau N., Krikunov A., Semakova A., Bolgova E., Kovalchuk S., Boukhanovsky A., Konradi A.O. Prevalence of diabetes and lipid disorders in hypertension patients referred to specialized cardiological centre: five-years trends. Journal of Hypertension. 2016. Vol. 34. No. Suppl.2. pp. e322-e323.
Syomov I.I., Bolgova E.V., Kovalchuk S.V., Krikunov A.V., Moiseeva O.M., Simakova M.A. Towards Infrastructure for Knowledge-based Decision Support in Clinical Practice. Procedia Computer Science. 2016. Vol. 100. pp. 907–914.
Bolgova E.V., Prokusheva D.I., Krikunov A.V., Zvartau N.E., Kovalchuk S.V. Human-Computer Interaction in Electronic Medical Records: From the Perspectives of Physicians and Data Scientists. Procedia Computer Science. 2016. Vol. 100. pp. 915–920.
Kiselev A.V., Karbovskii V., Kovalchuk S.V. . Agent-based modelling using ensemble approach with spatial and temporal composition. Procedia Computer Science. 2016. Vol. 80. pp. 530-541.
Karsakov A., Moiseev A., Mukhina K., Ankudinova I., Ignatieva M., Krotov E., Karbovskii V., Kovalchuk S., Konradi A. Toolbox for Visual Explorative Analysis of Complex Temporal Multiscale Contact Networks Dynamics in Healthcare. Procedia Computer Science. 2016. Vol. 80. pp. 2107-2118.
Funkner A., Kovalchuk S.V., Bochenina K. Preoperational Time Prediction for Percutaneous Coronary Intervention Using Machine Learning Techniques. Procedia Computer Science. 2016. Vol. 101. pp. 172-176.
Nasonov D.A. ., Visheratin A.A., Knyazkov K.V., Kovalchuk S.V. Interactive e-Science Cyberinfrastructure for Workflow Management Coupled with Big Data Technology. International Multidisciplinary Scientific GeoConference-SGEM: 15th International Multidisciplinary Scientific Geoconference SGEM 2015. 2015. Vol. 1. No. 2. pp. 175-182.
Kovalchuk S.V., Boukhanovsky A.V. Towards Ensemble Simulation of Complex Systems. Procedia Computer Science. 2015. Vol. 51. pp. 532-541.
Kosukhin S.S., Kovalchuk S.V., Boukhanovsky A.V. Cloud Technology for Forecasting Accuracy Evaluation of Extreme Metocean Events. Procedia Computer Science. 2015. Vol. 51. pp. 2933-2937.
Kovalchuk S.V., Knyazkov K.V., Syomov I.I., Yakovlev A.N., Boukhanovsky A.V. Personalized Clinical Decision Support with Complex Hospital-Level Modelling. Procedia Computer Science. 2015. Vol. 66. pp. 392-401.
Krikunov A.V., Kovalchuk S.V. . Dynamic Selection of Ensemble Members in Multi-model Hydrometeorological Ensemble Forecasting. Procedia Computer Science. 2015. Vol. 66. pp. 220-227.
Zakharchuk A.V., Kovalchuk S.V., Nasonov D.A. Dynamic domain-specific language for BigData tasks' description. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI). 2015. Vol. 246. pp. 1207-1218.
Kovalchuk S.V., Smirnov P.A., Knyazkov K.V., Zagarskikh A.S., Boukhanovsky A.V. Knowledge-based Expressive Technologies within Cloud Computing Environments. Advances in Intelligent Systems and Computing. 2014. Vol. 279. pp. 1-11.
Dukhanov A.V., Smirnov P.A., Karpova M.S., Kovalchuk S.V. e-Learning Course Design Based on the Virtual Simulation Objects Concept. 8th IEEE International Conference on Application of Information and Communication Technologies, AICT 2014 - Conference Proceedings. 2014. pp. 7036016.
Chirkin A.M. ., Kovalchuk S.V. Towards Better Workflow Execution Time Estimation. IERI Procedia. 2014. Vol. 10. pp. 216–223.
Smirnov P.A., Kovalchuk S.V. Linked-Data Integration for Workflow-Based Computational Experiments. Communications in Computer and Information Science. 2014. Vol. 468. pp. 175-183.
Kovalchuk S.V. ., Zakharchuk A.V., Liao J., Ivanov S.V. ., Boukhanovsky A.V. . A Technology for BigData Analysis Task Description using Domain-Specific Languages. Procedia Computer Science. 2014. Vol. 29. pp. 488–498.
Knyazkov K.V. ., Kovalchuk S.V. . Modeling and Simulation Framework for Development of Interactive Virtual Environments. Procedia Computer Science. 2014. Vol. 29. pp. 332–342.
Smirnov P.A., Kovalchuk S.V., Dukhanov A.V. Domain Ontologies Integration for Virtual Modelling and Simulation Environments. Procedia Computer Science. 2014. Vol. 29. pp. 2507 -2514.
Nasonov D.A., Churov T.N., Zagarskikh A.S., Kovalchuk S.V. Technological platform for complex processing of large data within early warning systems. WIT Transactions on Information and Communication Technologies. 2014. Vol. 56. pp. 625-634.
Kovalchuk S.V., Bezgodov A.A., Terekhov D.M., Boukhanovsky A.V. Interactive Environment for Affective Visual Analysis of Large Data within Virtual Reality. Proceedings of 2014 Science and Information Conference. 2014. pp. 736-741.
Kashirin V.V., Kovalchuk S.V., Boukhanovsky A.V. Evolutionary simulation of complex networks’ structures with specific functional properties. Advances in Intelligent Systems and Computing. 2014. Vol. 299. pp. 63-72.
Smirnov P.A., Kovalchuk S.V. Provenance-Based Workflow Composition with Virtual Simulation Objects Technology. 2014 11th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2014. 2014. pp. 930-934.
Динамический предметно-ориентированный язык для задач распределенной обработки больших данных в средах облачных вычислений
Chirkin A.M. ., Belloum A., Kovalchuk S.V., Makkes M. Execution Time Estimation for Workflow Scheduling. Proceedings of WORKS 2014: The 9th Workshop on Workflows in Support of Large-Scale Science - held in conjunction with SC 2014: The International Conference for High Performance Computing, Networking, Storage and Analysis. 2014. pp. 7019857.
Kovalchuk S.V., Smirnov P.A., Maryin S.V., Tchurov T.N., Karbovsky V.A. Deadline-driven resource management within urgent computing cyberinfrastructure. Procedia Computer Science. 2013. Vol. 18. pp. 2203 – 2212.
Ivanov S.V., Kovalchuk S.V., Boukhanovsky A.V. Workflow-based Collaborative Decision Support for Flood Management Systems. Procedia Computer Science. 2013. Vol. 18. pp. 2213 – 2222.
Kovalchuk S.V., Terekhov D.M., Bezgodov A.A., Boukhanovsky A.V. Visual Exploration of Complex Network Data Using Affective Brain-Computer Interface. International Journal of Advanced Computer Science and Applications (IJACSA). 2013. Vol. 4. No. 7. pp. 21–27.
Ковальчук С.В., Чиркин А.М., Князьков К.В. Методы построения и использования моделей производительности облачных сервисов. Динамика сложных систем - XXI век. 2013. Т. 7. № 3. С. 90-94.
Smirnov P.A. ., Kovalchuk S.V., Boukhanovsky A.V. . Knowledge-based support for complex systems exploration in distributed problem solving environments. Communications in Computer and Information Science. 2013. Vol. 394. pp. 147-161.
Boukhanovsky, A.V. ., Kovalchuk S.V. . High-Level Knowledge-Based Structures for Simulation within Urgent Computing Tasks. Procedia Computer Science. 2012. Vol. 9. pp. 1694-1703.
Kovalchuk S.V., Smirnov P.A., Kosukhin S.S., Boukhanovsky A.V. Virtual Simulation Objects Concept as a Framework for System-Level Simulation. 2012 IEEE 8th International Conference on E-Science, e-Science 2012. 2012. pp. 6404413.
Knyazkov K.V., Kovalchuk S.V., Tchurov T.N., Maryin S.V., Boukhanovsky A.V. CLAVIRE: e-Science Infrastructure for Data-driven Computing. Journal of Computational Science. 2012. Vol. 3. No. 6. pp. 504–510.
Марьин С.В., Ковальчук С.В. Сервисно-ориентированная платформа исполнения композитных приложений в распределенной среде. Известия высших учебных заведений. Приборостроение. 2011. Т. 54. № 10. С. 21-29.
Kovalchuk S.V., Larchenko A., Boukhanovsky A.V. Knowledge-Based Resource Management for Distributed Problem Solving. Advances in Intelligent and Soft Computing. 2011. Vol. 123. pp. 121-128.
Ковальчук С.В., Маслов В.Г. Интеллектуальная поддержка процесса конструирования композитных приложений в распределенных проблемно-ориентированных средах. Известия высших учебных заведений. Приборостроение. 2011. Т. 54. № 10. С. 29-36.
Бухановский А.В., Ковальчук С.В., Марьин С.В., Рыбаков Г.М. Динамическое управление распределенными вычислительными ресурсами в составе композитного приложения. Научно-технический вестник СПбГУ ИТМО. 2010. № 3(67). С. 126-127.
Бухановский А.В., Ковальчук С.В., Марьин С.В. Интеллектуальные высокопроизводительные программные комплексы моделирования сложных систем: концепция, архитектура и примеры реализации. Известия высших учебных заведений. Приборостроение.. 2009. Т. 52. № 10. С. 5–24.
Ковальчук С.В., Бухановский А.В. Параллельная производительность стохастических алгоритмов. Известия высших учебных заведений. Приборостроение. 2008. Т. 51. № 12. С. 5-12.
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Япония
США
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Австрия
Российская Федерация, Санкт-Петербург
Российская Федерация, Санкт-Петербург
Российская Федерация, Москва