Maslyaev M., Hvatov A. Multiobjective evolutionary discovery of equation-based analytical models for dynamical systems. Научно-технический вестник информационных технологий, механики и оптики [Scientific and Technical Journal of Information Technologies, Mechanics and Optics]. 2023. Vol. 23. No. 1(143). pp. 97-104.. doi: 10.17586/2226-1494-2023-23-1-97-104
Maslyaev M., Hvatov A. Comparison of Single- and Multi- Objective Optimization Quality for Evolutionary Equation Discovery. GECCO 2023 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2023. pp. 603–606.. doi: 10.1145/3583133.3590601
Bykov N., Hvatov A., Andreeva T., Lukin A.Y., Maslyaev M., Obraztsov N.V., Surov A.V., Boukhanovsky A.V. . Methods for a Partial Differential Equation Discovery: Application to Physical and Engineering Problems. Moscow University Physics Bulletin. 2023. Vol. 78. No. Suppl.1. pp. S256-S265.. doi: 10.3103/S0027134923070032
Maslyaev M., Hvatov A. Solver-Based Fitness Function for the Data-Driven Evolutionary Discovery of Partial Differential Equations. IEEE Congress on Evolutionary Computation, CEC 2022. 2022. pp. 1-8.. doi: 10.1109/CEC55065.2022.9870370
Bykov N., Obraztsov N.V., Hvatov A., Maslyaev M., Surov A.V. Hybrid modeling of gas-dynamic processes in AC plasma torches. Физика и механика материалов = Materials Physics and Mechanics. 2022. Vol. 50. No. 2. pp. 287-303.. doi: 10.18149/MPM.5022022_9
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Partial differential equations discovery with EPDE framework: Application for real and synthetic data (R). Journal of Computational Science. 2021. Vol. 53. pp. 101345.. doi: 10.1016/j.jocs.2021.101345
Sarafanov M.I., Borisova Y., Maslyaev M., Revin I., Maximov G., Nikitin N.O. Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River. Water. 2021. Vol. 13. No. 24. pp. 3482.. doi: 10.3390/w13243482
Hvatov A., Maslyaev M., Polonskaia I.S., Sarafanov M.I., Merezhnikov M., Nikitin N.O. Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models. Communications in Computer and Information Science. 2021. Vol. 1488. pp. 72-85.. doi: 10.1007/978-3-030-91885-9_6
Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.V. Towards generative design of computationally efficient mathematical models with evolutionary learning. Entropy. 2021. Vol. 23. No. 1. pp. 28.. doi: 10.3390/e23010028
Maslyaev M., Hvatov A. Multi-Objective Discovery of PDE Systems Using Evolutionary Approach. IEEE Congress on Evolutionary Computation, CEC 2021. 2021. pp. 596-603.. doi: 10.1109/CEC45853.2021.9504712
Hvatov A., Maslyaev M. The data-driven physical-based equations discovery using evolutionary approach. GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion. 2020. pp. 129–130.. doi: 10.1145/3377929.3389943
Maslyaev M., Hvatov A., Kalyuzhnaya A. Data-Driven Partial Differential Equations Discovery Approach for the Noised Multi-dimensional Data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2020. Vol. 12138 LNCS. pp. 86-100.. doi: 10.1007/978-3-030-50417-5_7
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Discovery of the data-driven models of continuous metocean process in form of nonlinear ordinary differential equations. Procedia Computer Science. 2020. Vol. 178. pp. 18-26.. doi: 10.1016/j.procs.2020.11.003
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Data-driven partial derivative equations discovery with evolutionary approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2019. Vol. 11540 LNCS. pp. 635-641.. doi: 10.1007/978-3-030-22750-0_61
Maslyaev M., Hvatov A. Discovery of the data-driven differential equation-based models of continuous metocean process. Procedia Computer Science. 2019. Vol. 156. pp. 367-376.. doi: 10.1016/j.procs.2019.08.213
Российская Федерация, Санкт-Петербург